
Package: fase (via r-universe)
August 27, 2024

Title Functional Adjacency Spectral Embedding

Version 1.0.1.9000

Description Latent process embedding for functional network data with
the Functional Adjacency Spectral Embedding. Fits smooth latent
processes based on cubic spline bases. Also generates
functional network data from three models, and evaluates a
network generalized cross-validation criterion for dimension
selection. For more information, see MacDonald, Zhu and Levina
(2022+) <arXiv:2210.07491>.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/peterwmacd/fase

BugReports https://github.com/peterwmacd/fase/issues

Imports RSpectra (>= 0.16.1), rTensor (>= 1.4.8), splines2 (>= 0.4.7)

Repository https://peterwmacd.r-universe.dev

RemoteUrl https://github.com/peterwmacd/fase

RemoteRef HEAD

RemoteSha 9f8ac1f7dd11f34e03f8766a953bc0c167efdde8

Contents
fase . 2
fase_seq . 5
gaussian_snapshot_bs . 8
gaussian_snapshot_ss . 10
proc_align . 12
proc_align3 . 13
proc_align_slicewise3 . 14
rdpg_snapshot_bs . 14

1

https://arxiv.org/abs/2210.07491
https://github.com/peterwmacd/fase
https://github.com/peterwmacd/fase/issues

2 fase

Index 17

fase Functional adjacency spectral embedding

Description

fase fits a functional adjacency spectral embedding to snapshots of (undirected) functional network
data. The latent processes are fit in a spline basis specified by the user, with additional options for
ridge penalization.

Usage

fase(A,d,self_loops,spline_design,lambda,optim_options,output_options)

Arguments

A An n× n×m array containing the snapshots of the functional network.

d A positive integer, the number of latent space dimensions of the functional em-
bedding.

self_loops A Boolean, if FALSE, all diagonal entries are ignored in optimization. Defaults
to TRUE.

spline_design A list, containing the spline design information. For fitting with a B-spline
design (the default):

type The string 'bs'.
q A positive integer, the dimension of the B-spline basis.
x_vec A vector, the snapshot evaluation indices for the data. Defaults to an

equally spaced vector of length m from 0 to 1.
x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).
spline_matrix An m × q matrix, the B-spline basis evaluated at the snapshot

indices. If not specified, it will be calculated internally.
ridge_mat The m×m matrix for the generalized ridge penalty. If lambda> 0,

defaults to diag(m).

For fitting with a smoothing spline design:

type The string 'ss'.
x_vec A vector, the snapshot evaluation indices for the data. Defaults to an

equally spaced vector of length m from 0 to 1.
x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).
spline_matrix An m×m matrix, the natural cubic spline basis evaluated at the

snapshot indices. If not specified, it will be calculated internally.
ridge_mat The m×m matrix for the generalized ridge penalty. Defaults to the

second derivatives of the natural cubic spline basis evaluated at the snapshot
indices.

fase 3

lambda A positive scalar, the scale factor for the generalized ridge penalty (see Details).
Defaults to 0.

optim_options A list, containing additional optional arguments controlling the gradient descent
algorithm.

eps A positive scalar, the convergence threshold for gradient descent in terms
of relative change in objective value. Defaults to 1e-5.

eta A positive scalar, the step size for gradient descent. Defaults to 1/(n*m).
K_max A positive integer, the maximum iterations for gradient descent. De-

faults to 2e3.
verbose A Boolean, if TRUE, console output will provide updates on the progress

of gradient descent. Defaults to FALSE.
init_W A 3-dimensional array containing initial basis coordinates for gradient

descent. Dimension should be n×spline_design$q×d for B-spline de-
signs, and n × m × d for smoothing spline designs. If included, init_M,
init_L and init_sigma are ignored.

init_sigma A positive scalar, the estimated edge dispersion parameter to cali-
brate initialization. If not provided, it is either estimated using the robust
method proposed by Gavish and Donoho (2014) for weighted edge net-
works, or set to a default value 0.5 for binary edge networks.

init_L A positive integer, the number of contiguous groups used for initializa-
tion. Defaults to the floor of (2nm/init_sigma2)1/3.

init_M A positive integer, the number of snapshots averaged in each group for
initialization. Defaults use all snapshots.

output_options A list, containing additional optional arguments controlling the output of fase.

align_output A Boolean, if TRUE, the returned latent processes have been aligned
according to a Procrustes alignment which minimizes (in terms of Frobe-
nius norm) the overall discrepancies between consecutive snapshots. De-
faults to TRUE.

return_coords A Boolean, if TRUE, the basis coordinates for each latent process
component are also returned as an array. Defaults to FALSE.

return_ngcv A Boolean, if TRUE and spline_design$type=='bs', the net-
work generalized cross validation criterion is returned. Defaults to TRUE.

Details

fase finds a functional adjacency spectral embedding of an n × n × m array A of symmetric
adjacency matrices on a common set of nodes, where each n×n slice is associated to a scalar index
xk for k = 1, ...,m. Embedding requires the specification of a latent space dimension d and spline
design information (with the argument spline_design).

fase can fit latent processes using either a cubic B-spline basis with equally spaced knots, or a nat-
ural cubic spline basis with a second derivative (generalized ridge) smoothing penalty: a smoothing
spline. To fit with a B-spline design (spline_design$type = 'bs'), one must minimally provide
a basis dimension q of at least 4 and at most m.

When fitting with a smoothing spline design, the generalized ridge penalty is scaled by λ/n, where
λ is specified by the argument lambda. see MacDonald et al., (2022+), Appendix E for more

https://arxiv.org/abs/2210.07491

4 fase

details. lambda can also be used to introduce a ridge penalty on the basis coordinates when fitting
with B-splines.

Fitting minimizes a least squares loss, using gradient descent (Algorithm 2) on the basis coordinates
wi,r of each component process

zi,r(x) = wT
i,rB(x).

Additional options for the fitting algorithm, including initialization, can be specified by the argu-
ment optim_options. For more details on the fitting and initialization algorithms, see MacDonald
et al., (2022+), Section 3.

By default, fase will return estimates of the latent processes evaluated at the snapshot indices as an
n× d×m array, after performing a Procrustes alignment of the consecutive snapshots. This extra
alignment step can be skipped. fase will also return the spline design information used to fit the
embedding, convergence information for gradient descent, and (if specified) the basis coordinates.

When fitting with B-splines, fase can return a network generalized cross validation criterion, de-
scribed in MacDonald et al., (2022+), Section 3.3. This criterion can be minimized to choose
appropriate values for q and d.

Value

A list is returned with the functional adjacency spectral embedding, the spline design information,
and some additional optimization output:

Z An n × d × m array containing the latent process embedding evaluated at the
indices in spline_design$x_vec.

W For B-spline designs, an n×q×d array; or for smoothing spline designs, an n×
m×d array of estimated basis coordinates. If output_options$return_coords
is FALSE, this is not returned.

spline_design A list, describing the spline design:

type A string, either 'bs' or 'ss'.
q A positive integer, the dimension of the B-spline basis. Only returned for

B-spline designs.
x_vec A vector, the snapshot evaluation indices for the data.
x_max A scalar, the maximum of the index space.
x_min A scalar, the minimum of the index space.
spline_matrix For B-spline designs, an m× q matrix; or for smoothing spline

designs, an m×m matrix, the basis evaluated at the snapshot indices.
ridge_matrix An m × m matrix used in the generalized ridge penalty. Only

returned for lambda > 0.

ngcv A scalar, the network generalized cross validation criterion (see Details). Only
returned for B-spline designs and when output_options$return_ngcv is TRUE.

K A positive integer, the number of iterations run in gradient descent.

converged An integer convergence code, 1 if gradient descent converged in fewer than
optim_options$K_max iterations, 0 otherwise.

https://arxiv.org/abs/2210.07491
https://arxiv.org/abs/2210.07491
https://arxiv.org/abs/2210.07491

fase_seq 5

Examples

Gaussian edge data with sinusoidal latent processes
set.seed(1)
data <- gaussian_snapshot_ss(n=50,d=2,

x_vec=seq(0,1,length.out=50),
self_loops=FALSE,sigma_edge=4)

fase fit with B-spline design
fit_bs <- fase(data$A,d=2,self_loops=FALSE,

spline_design=list(type='bs',q=9,x_vec=data$spline_design$x_vec),
optim_options=list(eps=1e-4,K_max=40),
output_options=list(return_coords=TRUE))

fase fit with smoothing spline design
fit_ss <- fase(data$A,d=2,self_loops=FALSE,

spline_design=list(type='ss',x_vec=data$spline_design$x_vec),
lambda=.5,
optim_options=list(eta=1e-4,K_max=40,verbose=FALSE),
output_options=list(align_output=FALSE))

#NOTE: both examples fit with small optim_options$K_max=40 for demonstration

fase_seq Functional adjacency spectral embedding (sequential algorithm)

Description

fase_seq fits a functional adjacency spectral embedding to snapshots of (undirected) functional
network data, with each of the d latent dimensions fit sequentially. The latent processes are fit in a
spline basis specified by the user, with additional options for ridge penalization.

Usage

fase_seq(A,d,self_loops,spline_design,lambda,optim_options,output_options)

Arguments

A An n× n×m array containing the snapshots of the functional network.

d A positive integer, the number of latent space dimensions of the functional em-
bedding.

self_loops A Boolean, if FALSE, all diagonal entries are ignored in optimization. Defaults
to TRUE.

spline_design A list, containing the spline design information. For fitting with a B-spline
design (the default):

type The string 'bs'.

6 fase_seq

q A positive integer, the dimension of the B-spline basis.
x_vec A vector, the snapshot evaluation indices for the data. Defaults to an

equally spaced vector of length m from 0 to 1.
x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).
spline_matrix An m × q matrix, the B-spline basis evaluated at the snapshot

indices. If not specified, it will be calculated internally.
ridge_mat The m×m matrix for the generalized ridge penalty. If lambda> 0,

defaults to diag(m).

For fitting with a smoothing spline design:

type The string 'ss'.
x_vec A vector, the snapshot evaluation indices for the data. Defaults to an

equally spaced vector of length m from 0 to 1.
x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).
spline_matrix An m×m matrix, the natural cubic spline basis evaluated at the

snapshot indices. If not specified, it will be calculated internally.
ridge_mat The m×m matrix for the generalized ridge penalty. Defaults to the

second derivatives of the natural cubic spline basis evaluated at the snapshot
indices.

lambda A positive scalar, the scale factor for the generalized ridge penalty (see Details).
Defaults to 0.

optim_options A list, containing additional optional arguments controlling the gradient descent
algorithm.

eps A positive scalar, the convergence threshold for gradient descent in terms
of relative change in objective value. Defaults to 1e-5.

eta A positive scalar, the step size for gradient descent. Defaults to 1/(n*m).
K_max A positive integer, the maximum iterations for gradient descent. De-

faults to 2e3.
verbose A Boolean, if TRUE, console output will provide updates on the progress

of gradient descent. Defaults to FALSE.
init_W A 3-dimensional array containing initial basis coordinates for gradient

descent. Dimension should be n×spline_design$q×d for B-spline de-
signs, and n × m × d for smoothing spline designs. If included, init_M,
init_L and init_sigma are ignored.

init_sigma A positive scalar, the estimated edge dispersion parameter to cali-
brate initialization. If not provided, it is either estimated using the robust
method proposed by Gavish and Donoho (2014) for weighted edge net-
works, or set to a default value 0.5 for binary edge networks.

init_L A positive integer, the number of contiguous groups used for initializa-
tion. Defaults to the floor of (2nm/init_sigma2)1/3.

init_M A positive integer, the number of snapshots averaged in each group for
initialization. Defaults use all snapshots.

output_options A list, containing additional optional arguments controlling the output of fase.

fase_seq 7

return_coords A Boolean, if TRUE, the basis coordinates for each latent process
component are also returned as an array. Defaults to FALSE.

return_ngcv A Boolean, if TRUE and spline_design$type=='bs', the net-
work generalized cross validation criterion is returned. Defaults to TRUE.

Details

Note that fase_seq is a wrapper for fase. When d = 1, fase_seq coincides with fase.

fase_seq finds a functional adjacency spectral embedding of an n× n×m array A of symmetric
adjacency matrices on a common set of nodes, where each n×n slice is associated to a scalar index
xk for k = 1, ...,m. Embedding requires the specification of a latent space dimension d and spline
design information (with the argument spline_design).

fase_seq can fit latent processes using either a cubic B-spline basis with equally spaced knots,
or a natural cubic spline basis with a second derivative (generalized ridge) smoothing penalty: a
smoothing spline. To fit with a B-spline design (spline_design$type = 'bs'), one must mini-
mally provide a basis dimension q of at least 4 and at most m.

When fitting with a smoothing spline design, the generalized ridge penalty is scaled by λ/n, where
λ is specified by the argument lambda. see MacDonald et al., (2022+), Appendix E for more
details. lambda can also be used to introduce a ridge penalty on the basis coordinates when fitting
with B-splines.

Fitting minimizes a least squares loss, using gradient descent (Algorithm 1) on the basis coordinates
wi,r of each component process

zi,r(x) = wT
i,rB(x).

Additional options for the fitting algorithm, including initialization, can be specified by the argu-
ment optim_options. For more details on the fitting and initialization algorithms, see MacDonald
et al., (2022+), Section 3.

By default, fase_seq will return estimates of the latent processes evaluated at the snapshot indices
as an n× d×m array, after performing a Procrustes alignment of the consecutive snapshots. This
extra alignment step can be skipped. fase_seq will also return the spline design information used
to fit the embedding, convergence information for gradient descent, and (if specified) the basis
coordinates.

When fitting with B-splines, fase_seq can return a network generalized cross validation criterion,
described in MacDonald et al., (2022+), Section 3.3. This criterion can be minimized to choose
appropriate values for q and d.

Value

A list is returned with the functional adjacency spectral embedding, the spline design information,
and some additional optimization output:

Z An n × d × m array containing the latent process embedding evaluated at the
indices in spline_design$x_vec.

W For B-spline designs, an n×q×d array; or for smoothing spline designs, an n×
m×d array of estimated basis coordinates. If output_options$return_coords
is FALSE, this is not returned.

spline_design A list, describing the spline design:

https://arxiv.org/abs/2210.07491
https://arxiv.org/abs/2210.07491
https://arxiv.org/abs/2210.07491
https://arxiv.org/abs/2210.07491

8 gaussian_snapshot_bs

type A string, either 'bs' or 'ss'.
q A positive integer, the dimension of the B-spline basis. Only returned for

B-spline designs.
x_vec A vector, the snapshot evaluation indices for the data.
x_max A scalar, the maximum of the index space.
x_min A scalar, the minimum of the index space.
spline_matrix For B-spline designs, an m× q matrix; or for smoothing spline

designs, an m×m matrix, the basis evaluated at the snapshot indices.
ridge_matrix An m × m matrix used in the generalized ridge penalty. Only

returned for lambda > 0.

ngcv A scalar, the network generalized cross validation criterion (see Details). Only
returned for B-spline designs and when output_options$return_ngcv is TRUE.

K A positive integer, the number of iterations run in gradient descent.

converged An integer convergence code, 1 if gradient descent converged in fewer than
optim_options$K_max iterations, 0 otherwise.

Examples

Gaussian edge data with sinusoidal latent processes
set.seed(1)
data <- gaussian_snapshot_ss(n=50,d=2,

x_vec=seq(0,1,length.out=50),
self_loops=FALSE,sigma_edge=4)

fase fit with B-spline design
fit_bs <- fase_seq(data$A,d=2,self_loops=FALSE,

spline_design=list(type='bs',q=9,x_vec=data$spline_design$x_vec),
optim_options=list(eps=1e-4,K_max=40),
output_options=list(return_coords=TRUE))

fase fit with smoothing spline design
fit_ss <- fase_seq(data$A,d=2,self_loops=FALSE,

spline_design=list(type='ss',x_vec=data$spline_design$x_vec),
lambda=.5,
optim_options=list(eta=1e-4,K_max=40,verbose=FALSE))

#NOTE: both models fit with small optim_options$K_max=40 for demonstration

gaussian_snapshot_bs Simulate Gaussian edge networks with B-spline latent processes

Description

gaussian_snapshot_bs simulates a realization of a functional network with Gaussian edges, ac-
cording to an inner product latent process model. The latent processes are generated from a B-spline
basis with equally spaced knots.

gaussian_snapshot_bs 9

Usage

gaussian_snapshot_bs(n,d,m,self_loops=TRUE,
spline_design,sigma_edge=1,
process_options)

Arguments

n A positive integer, the number of nodes.

d A positive integer, the number of latent space dimensions.

m A positive integer, the number of snapshots. If this argument is not specified, it
is determined from the snapshot index vector spline_design$x_vec.

self_loops A Boolean, if FALSE, all diagonal adjacency matrix entries are set to zero. De-
faults to TRUE.

spline_design A list, describing the B-spline design:

q A positive integer, the dimension of the B-spline basis. Must be at least 4 and
at most m.

x_vec A vector, the snapshot evaluation indices for the data. Defaults to an
equally spaced sequence of length m from 0 to 1.

x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).

sigma_edge A positive scalar, the entry-wise standard deviation for the Gaussian edge vari-
ables. Defaults to 1.

process_options

A list, containing additional optional arguments:

sigma_coord A positive scalar, or a vector of length d. If it is a vector, the
entries correspond to the standard deviation of the randomly generated basis
coordinates for each latent dimension. If is is a scalar, it corresponds to the
standard deviation of the basis coordinates in all dimensions. Defaults to 1.

Details

The spline design of the functional network data (snapshot indices, basis dimension) is generated
using the information provided in spline_design, producing a q-dimensional cubic B-spline basis
with equally spaced knots.

The latent process basis coordinates are generated as iid Gaussian random variables with standard
deviation process_options$sigma_coord. Each latent process is given by

zi,r(x) = wT
i,rB(x).

Then, the n × n symmetric adjacency matrix for snapshot k = 1, ...,m has independent Gaussian
entries with standard deviation sigma_edge and mean

E([Ak]ij) = zi(xk)
T zj(xk)

for i ≤ j (or i < j with no self loops).

10 gaussian_snapshot_ss

Value

A list is returned with the realizations of the basis coordinates, spline design, and the multiplex
network snapshots:

A An array of dimension n× n×m, the realized functional network data.

W An array of dimension n× q × d, the realized basis coordinates.

spline_design A list, describing the B-spline design:

type The string 'bs'.

q A positive integer, the dimension of the B-spline basis.

x_vec A vector, the snapshot evaluation indices for the data.

x_max A scalar, the maximum of the index space.

x_min A scalar, the minimum of the index space.

spline_matrix An m × q matrix, the B-spline basis evaluated at the snapshot
indices.

Examples

Gaussian edge data with B-spline latent processes, Gaussian coordinates
NOTE: x_vec is automatically populated given m

data <- gaussian_snapshot_bs(n=100,d=4,m=100,
self_loops=FALSE,
spline_design=list(q=12),
sigma_edge=3,
process_options=list(sigma_coord=.75))

gaussian_snapshot_ss Simulate Gaussian edge networks with nonparametric latent processes

Description

gaussian_snapshot_ss simulates a realization of a functional network with Gaussian edges, ac-
cording to an inner product latent process model. The latent processes are randomly generated
sinusoidal functions.

Usage

gaussian_snapshot_ss(n,d,m,x_vec,self_loops=TRUE,
sigma_edge=1,process_options)

gaussian_snapshot_ss 11

Arguments

n A positive integer, the number of nodes.

d A positive integer, the number of latent space dimensions.

m A positive integer, the number of snapshots. If this argument is not specified, it
is determined from the snapshot index vector x_vec.

x_vec A vector, the snapshot evaluation indices for the data. Defaults to an equally
spaced sequence of length m from 0 to 1.

self_loops A Boolean, if FALSE, all diagonal adjacency matrix entries are set to zero. De-
faults to TRUE.

sigma_edge A positive scalar, the entry-wise standard deviation for the Gaussian edge vari-
ables. Defaults to 1.

process_options

A list, containing additional optional arguments:

amplitude A positive scalar, the maximum amplitude of the randomly gener-
ated latent processes. Defaults to 3.

frequency A positive scalar, frequency of the randomly generated latent pro-
cesses. Defaults to 2.

sigma_int A positive scalar, or a vector of length d. If it is a vector, the entries
correspond to the standard deviation of the random intercepts of the node
processes for each latent dimension. If is is a scalar, it corresponds to the
standard deviation of the random intercepts in all dimensions. Defaults to
0.5.

return_fn A Boolean, if TRUE, then the latent processes are returned as a func-
tion which takes a vector of indices and returns the corresponding evalu-
ations of the latent process matrices. Otherwise, the latent processes are
returned as an n × d × m array evaluated at the prespecified snapshot in-
dices. Defaults to FALSE.

Details

The the latent process for node i in latent dimension r is given independently by

zi,r(x) =
a sin[2fπ(x− U)/(xmax − xmin)]

1 + (2a− 1)[x+B(xmax − 2x)]
+G

Where G is Gaussian with mean 0 and standard deviation σint,r, B is Bernoulli with mean 1/2,
and U is uniform with minimum spline_design$x_min and maximum spline_design$x_max.
f is a frequency parameter specified with process_options$frequency, and a is a maximum
amplitude parameter specified with process_options$amplitude. Roughly, each process is a
randomly shifted sine function which goes through f cycles on the index set, with amplitude either
increasing or decreasing between 1/2 and a.

Then, the n × n symmetric adjacency matrix for snapshot k = 1, ...,m has independent Gaussian
entries with standard deviation sigma_edge and mean

E([Ak]ij) = zi(xk)
T zj(xk)

for i ≤ j (or i < j with no self loops).

12 proc_align

This function may return the latent processes as an n × d × m array evaluated at the prespecified
snapshot indices, or as a function which takes a vector of indices and returns the corresponding
evaluations of the latent process matrices. It also returns the spline design information required to
fit a FASE embedding to this data with a natural cubic spline.

Value

A list is returned with the realizations of the basis coordinates, spline design, and the multiplex
network snapshots:

A An array of dimension n× n×m, the realized functional network data.

Z If process_options$return_fn is TRUE, a function, which takes a vector of
indices and returns the corresponding evaluations of the latent process matrices.
Otherwise, an array of dimension n × d ×m, the latent processes evaluated at
the prespecified snapshot indices.

spline_design A list, describing the B-spline design:

type The string 'ss'.
x_vec A vector, the snapshot evaluation indices for the data.

Examples

Gaussian edge data with sinusoidal latent processes
NOTE: latent processes are returned as a function

data <- gaussian_snapshot_ss(n=100,d=2,
x_vec=seq(0,3,length.out=80),
self_loops=TRUE,
sigma_edge=4,
process_options=list(amplitude=4,

frequency=3,
return_fn=TRUE))

proc_align Procrustes alignment

Description

proc_align orthogonally transforms the columns of a matrix A to find the best approximation
(in terms of Frobenius norm) to a second matrix B. Optionally, it may also return the optimal
transformation matrix.

Usage

proc_align(A,B,return_orth=FALSE)

proc_align3 13

Arguments

A An n× d matrix.

B An n× d matrix.

return_orth A Boolean which specifies whether to return the orthogonal transformation. De-
faults to FALSE.

Value

If return_orth is FALSE, returns the n × d matrix resulting from applying the optimal aligning
transformation to the columns of A. Otherwise, returns a list with two entries:

Ao The n×d matrix resulting from applying the optimal aligning transformation to
the columns of A.

orth The d× d optimal aligning orthogonal transformation matrix.

proc_align3 Procrustes alignment for 3-mode tensors

Description

proc_align3 applies one orthogonal transformation to the columns of each of the n × d slices of
an n× d×m array A to find the best approximation (in terms of matrix Frobenius norm, averaged
over the n × d slices) to a second n × d × m array B. Optionally, it may also return the optimal
transformation matrix.

Usage

proc_align3(A,B,return_orth=FALSE)

Arguments

A An n× d×m array.

B An n× d×m array.

return_orth A Boolean which specifies whether to return the orthogonal transformation. De-
faults to FALSE.

Value

If return_orth is FALSE, returns the n× d×m array resulting from applying the optimal aligning
transformation to the columns of the n× d slices of A. Otherwise, returns a list with two entries:

Ao The n×d matrix resulting from applying the optimal aligning transformation to
the columns of the n× d slices of A.

orth The d× d optimal aligning orthogonal transformation matrix.

14 rdpg_snapshot_bs

proc_align_slicewise3 Slicewise Procrustes alignment for 3-mode tensors

Description

proc_align_slicewise3 applies an orthogonal transformation to the columns of each of the n×d
slices of an n× d×m array A to find the best approximation (in terms of matrix Frobenius norm)
to the corresponding n× d slice of a second n× d×m array B.

Usage

proc_align_slicewise3(A,B)

Arguments

A An n× d×m array.

B An n× d×m array.

Value

Returns the n × d × m array resulting from applying the optimal aligning transformations to the
columns of the n× d slices of A.

rdpg_snapshot_bs Simulate binary edge networks with B-spline latent processes

Description

rdpg_snapshot_bs simulates a realization of a functional network with Bernoulli edges, according
to an inner product latent process model. The latent processes are generated from a B-spline basis
with equally spaced knots.

Usage

rdpg_snapshot_bs(n,d,m,self_loops=TRUE,
spline_design,process_options)

Arguments

n A positive integer, the number of nodes.

d A positive integer, the number of latent space dimensions.

m A positive integer, the number of snapshots. If this argument is not specified, it
is determined from the snapshot index vector spline_design$x_vec.

self_loops A Boolean, if FALSE, all diagonal adjacency matrix entries are set to zero. De-
faults to TRUE.

rdpg_snapshot_bs 15

spline_design A list, describing the B-spline design:

q A positive integer, the dimension of the B-spline basis. Must be at least 4 and
at most m.

x_vec A vector, the snapshot evaluation indices for the data. Defaults to an
equally spaced sequence of length m from 0 to 1.

x_max A scalar, the maximum of the index space. Defaults to max(spline_design$x_vec).
x_min A scalar, the minimum of the index space. Defaults to min(spline_design$x_vec).

process_options

A list, containing additional optional arguments:

alpha_coord A positive scalar, or a vector of length d. If it is a vector, it corre-
sponds to the Dirichlet parameter of the basis coordinates. If is is a scalar,
the basis coordinates have Dirichlet parameter rep(alpha_coord,d). De-
faults to 0.1.

density A scalar between 0 and 1, which controls the approximate overall edge
density of the resulting multiplex matrix. Defaults to 1/d. If specified larger
than 1/d, this argument is reset to 1/d and a warning is given.

Details

The spline design of the functional network data (snapshot indices, basis dimension) is generated
using the information provided in spline_design, producing a q-dimensional cubic B-spline basis
with equally spaced knots.

The (q×d) latent process basis coordinates Wi for each node are generated as q iid Dirichlet random
variables with d-dimensional parameter process_options$alpha_coord or rep(process_options$alpha_coord,d)
depending on the dimension of process_options$alpha_coord. Roughly, smaller values of process_options$alpha_coord
will tend to generate latent positions closer to the corners of the simplex.

Wi is then rescaled so the overall network density is approximately process_options$density,
and the Euclidean norm of zi(x) never exceeds 1. If the density requested is too high, it will revert
to the maximum density under this model (1/d). Then each latent process is given by

zi(x) = WT
i B(x).

The n×n symmetric adjacency matrix for snapshot k = 1, ...,m has independent Bernoulli entries
with mean

E([Ak]ij) = zi(xk)
T zj(xk)

for i ≤ j (or i < j with no self loops).

Value

A list is returned with the realizations of the basis coordinates, spline design, and the multiplex
network snapshots:

A An array of dimension n× n×m, the realized functional network data.

W An array of dimension n× q × d, the realized basis coordinates.

spline_design A list, describing the B-spline design:

type The string 'bs'.

16 rdpg_snapshot_bs

q A positive integer, the dimension of the B-spline basis.
x_vec A vector, the snapshot evaluation indices for the data.
x_max A scalar, the maximum of the index space.
x_min A scalar, the minimum of the index space.
spline_matrix An m × q matrix, the B-spline basis evaluated at the snapshot

indices.

Examples

Bernoulli edge data with B-spline latent processes, Dirichlet coordinates
NOTE: for B-splines, x_max and x_min do not need to coincide with the
max and min snapshot times.

data <- rdpg_snapshot_bs(n=100,d=10,
self_loops=FALSE,
spline_design=list(q=8,

x_vec=seq(-1,1,length.out=50),
x_min=-1.1,x_max=1.1),

process_options=list(alpha_coord=.2,
density=1/10))

Index

fase, 2
fase_seq, 5

gaussian_snapshot_bs, 8
gaussian_snapshot_ss, 10

proc_align, 12
proc_align3, 13
proc_align_slicewise3, 14

rdpg_snapshot_bs, 14

17

	fase
	fase_seq
	gaussian_snapshot_bs
	gaussian_snapshot_ss
	proc_align
	proc_align3
	proc_align_slicewise3
	rdpg_snapshot_bs
	Index

